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A B S T R A C T

DNA fidelity is constantly endangered by various types of intrinsic damages and extrinsic damages. Cells that are
affected by DNA damage employ a specific, intricate, and interconnected network of cellular and molecular
events (known as DNA damage response (DDR)) in order to maintain genome stability. More importantly, DDR is
employed to pass intact genomes on to the next generation. Polyphenols constitute a large group of plant-based
secondary metabolites widely present in foods and beverages with plant origins (e.g., fruits, vegetables, grains,
spices, soy, essential oils nuts, tea, and wine). Based on chemical structures, polyphenols are grouped into three
major phytochemical classes: phenolic acids, flavonoids and non-flavonoids. In this review, we aim to explain
how polyphenolic compounds modulate DDR sensors, transducers and mediators, with discussion of how
polyphenols modulate apoptosis in response to DNA damage in various types of cancer.

1. Introduction

DNA is constantly subjected to various types of intrinsic damages
such as enzymatic conversions in bases, replication errors, and by-
products of metabolic activities or extrinsic damages, including ionizing
radiations (IR), alkylating agents, benz(o)pyrene, aflatoxins, and elec-
trophilic reactant metabolites. These extensively threaten the integrity
and stability of whole genome [1]. To maintain genomic stability and
more importantly, to pass intact genomes on to the next generation, a
specific, intricate, and interconnected network of cellular and mole-
cular events namely DNA damage response (DDR) comprised of protein
kinases-based intra- and inter-cellular signaling pathways, is triggered
by affected cells [2]. DDR eliminates the critical and dangerous con-
ditions of the cell through a cascade of three major events: sensing DNA
damage, transducing the damage signal into downstream effectors, and
finally deciding on the fate of the damaged cell [3]. If the DNA damage
is repairable after the cell cycle arresting, the DNA repair machine
enters action and guarantees the survival of the cell by eliminating the
damage. If the damage is severely irreparable, however, the cellular
response enter the cell death or apoptosis phase [4]. Collectively, the
bottom line is to prevent a broad range of genomic aberrations, such as
point mutations, chromosomal translocations, gain or loss of

chromosomal segments or entire chromosomes, all sources of patholo-
gical conditions, such as cancer, accelerated ageing, neurodegenerative
disorders, as well as immune deficiencies and infertility [5]. Given the
significance of DDR to cellular health, targeting it at different levels in
order to modulate cellular response is a final goal of various research
studies in multiple fields, particularly cancer [6]. In this context,
polyphenols are potential and well-studied candidates. ;These phyto-
chemicals are considered one of the most important dietary compounds
with antioxidant and chemopreventive properties [7]. An increasing
body of research has shown that dietary polyphenolic compounds
promote human health [8–12] through tight suppression of the devel-
opment of degenerative diseases, such as cancer [8,9], cardiovascular
diseases [10,11], and metabolic disorders [12]. Therefore, the present
review discusses the function of various polyphenolic compounds in
regulating DDR by explaining the radical scavenging role of poly-
phenols in protecting against DNA damage, as well as their modulatory
effects of the four major components of DDR; sensors, transducers,
mediators, and effectors.

2. Polyphenols

All compounds with at least one aromatic ring and at least one
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hydroxyl functional group, under the rubric polyphenols, constitute a
large group of plant secondary metabolites which are widely present in
foods and beverages of plant origins (e.g., fruits, vegetables, grains,
spices, soy, essential oils nuts, tea, and wine) [13]. They comprise three
major phytochemical classes which are phenolic acids, flavonoids and
non-flavonoids, based on chemical structures. The most common
classes include phenolic acids (including hydroxybenoic acid and hy-
droxycinnamic acid) and flavonoids (including anthocyanins, flavanols,
flavanones, flavones, flavonols, and isoflavonoids) which respectively
account for about 30% and 60% of all natural polyphenols. Non-fla-
vonoids are also divided into three subgroups of stilbenes, lignans, and
tannins [14]. Due to their potential antioxidant capability, polyphenols
are demonstrated to hamper oxidative stress as well as subsequent
cellular damages and inflammation [15]. These critical biological
functions of polyphenols are ascribed to their exclusive chemical
structures. Acting as a potent electron or hydrogen atom donors, owing
to possessing aromatic properties and conjugation with numerous hy-
droxyl groups is one of the polyphenols’ unique features. This is ex-
tensively contributed to creating a strong defensive obstacle against
free radicals and other reactive oxygen species (ROSs) [16]. The active
form of polyphenols in plants are glycosides, acylglycosides, and other
conjugated forms rather than aglycones [17]. In the human digestive
tract, the absorption of phenolic glycosides in foods is less efficient in
comparison with their respective aglycones [18]. Therefore, the form of
dietary polyphenols may affect the outcome of their health benefits,
particularly their antioxidant function [18]. Suppression of oxidative
stress-induced damages by polyphenols is also achieved by anti-in-
flammatory effects of these compounds [17]. It has been reported that
polyphenols can inhibit the inflammatory response through interfering
with inflammatory signaling cascades, such as nuclear factor-κB (NF-
κB), mitogen-activated protein kinase (MAPK), and possibly through
suppression of pro-inflammatory cytokines. These include interleukin-
1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), and interferon-γ
(IFN-γ) (p6) [19–,20,21]. Another important function of polyphenols is
interaction with basic cellular mechanisms involved in tumor promo-
tion and metastasis, oncogenes, and oncoproteins, including membrane
and intracellular receptors, signaling cascades, and basic enzymes (as
well as nucleic acids and nucleoproteins). All of the above provide in-
sights into their beneficial health effects [22].

3. Polyphenols: dietary antioxidants that prevent DNA damage

The antioxidant activity of dietary polyphenols involves scavenging
free radicals as an electron or hydrogen donating factor [23]. In fact,
these compounds potently neutralize the harmful effect of oxygen and
nitrogen reactive species including O2°−, OH°, peroxyl radicals (RO2°),
and peroxynitrous acid (ONOOH) [24,25], as well as perform effective
disruption of the propagation phase of lipid autoxidation chain reac-
tions [25]. Increased activity of antioxidant enzymes, such as catalase
(CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and
glutathione reductase (GR), is another function of polyphenols in re-
storing redox homeostasis [17,24]. In addition to significant upregu-
lation of these enzymes through a nuclear factor erythroid-related
factor (Nrf2) modulates the antioxidant-responsive elements (ARE)-
mediated transcriptions of various genes, including detoxifying en-
zymes [17]. Furthermore, these dietary natural compounds protect
DNA against the deleterious effects of physical agents, ionizing radia-
tion, and toxins and chemotherapeutic agents. In fact, DNA damage is
one of the important, as well as malicious, outcomes of exposure to
these agents. Since one of the major causes of DNA damage is the in-
creased ROS levels, the protective effects of polyphenols are probably
associated to their antioxidant potential. Table 1 provides a compre-
hensive list of studies about the protective roles of plant-derived poly-
phenols, as well as three major classes of these compounds against the
DNA damage induced by various agents.

4. Polyphenols modulate DDR

4.1. Polyphenols and DDR sensors

Following any damage to cellular genome, DDR and its key players
(DDR sensors) begin to detect and sense DNA lesions. They additionally
trigger an intricate cascade to eliminate deleterious damages. DDR
sensors recruit the downstream transducer molecules to initiate a ki-
nase-based phosphorylation cascade and elicit an appropriate response
for maintaining genome integrity [26,27]. Two distinct protein com-
plexes are involved in the detection of the two major type of single
strand breaks (SSBs) and double strand breaks (DSBs) [26]. The DSB
sensors involved in the ataxia-telangiectasia mutated (ATM) pathway
are MRE11/RAD50/NBS1 (MRN) complex that recruits ATM at the DSB
sites, and activates ATM to phosphorylate the target proteins [6]. In
addition, the ATM activation triggers one of the earliest events of DDR
at the DSB site, namely phosphorylation of the histone-variant H2AX
producing γH2AX [6]. γH2AX functions in turn as a signal for DNA
damage. Replication protein A (RPA), a single-strand DNA (ssDNA)-
binding protein, functions as a sensor in the ATR pathway [28]. In
ssDNA damages, replication protein A (RPA) and RAD9/RAD1/HUS1
[9,1,1] act as sensors and activate ATR pathway [28].

4.1.1. MRN complex
A major DDR sensor involved in the DSB recognition and recruit-

ment of downstream transducers, the MRN complex consists of two
structurally proteins, namely Mre11 and Rad50, involved in the te-
thering and trimming of DNA ends. It also has a regulatory component,
Nbs1, which is a substrate of the ATM kinase and by activation forms an
amplification loop for ATM activation [29]. The current knowledge of
the modulatory effects of polyphenols on the DDR through regulation of
MRN complex is very small. Gatz et al. [30] examined the effects of
resveratrol, a polyphenol belong to stilbenes, on the DSB repair in
lymphoblastoid cell lines where resveratrol suppressed DNA repair
machinery independently of growth and death regulatory functions.
Resveratrol was also shown to phosphorylate the Nbs1 at Ser343. Nbs1,
in turn, repressed DNA repair possibly via the MRN complex, suggesting
that both ATM and ATR function as Nbs1 kinases activated by resver-
atrol [30]. In another study evaluating the therapeutic potential of
pomegranate extract containing various polyphenols, it was reported
that resveratrol inhibited breast cancer cell growth by inducing cell
cycle arrest in G2/M, followed by the induction of apoptosis [31]. Cells
treated with pomegranate extract resulted in significant down-
regulation of proteins encoded by RAD50, NBS, and MRE11 forming the
MRN complex, which maintains genome stability during replication
and is essential for cell viability. Therefore, polyphenols were shown to
affect the DNA repair pathway required for the survival of cancer cells
[31].

4.1.2. γH2AX
Plant extract polyphenols: γH2AX foci mark sites of DSB breaks and

recruit multiple components of DDR and DNA repair. When the DNA
lesions are completely removed, γH2AX is de-activated. However, in
cells with unstable genomes, γH2AX remains activated and cells re-
plicate without complete DNA repair [32]. The biomarker of DNA da-
mage, γH2AX is frequently reported to be regulated by DNA damage-
inducing genotoxic agents in tumor cell [33]. An increasing number of
reports suggest γH2AX to be a potential target of polyphenols in mod-
ulating DDR. Polyphenols-induced reduction in DNA damage, as well as
decrease in ROS levels are two important factors in restriction of tumor
initiation and promotion. Camptosorus sibiricus Rupr (CSR) extract,
containing high percentage of various polyphenols, was reported to
suppress ROS production by re-activating Nrf2-mediated reductases in
lung adenocarcinoma cells in the presence of Benzo(a)pyrene (B[a]P)
[34]. Moreover, CSR attenuated γH2AX formation and hence reducing
the DNA damage of cancer cells. All of the above effects results in
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decrease in the tumor volume, tumor size, and multiplicity of B[a]P-
induced lung adenocarcinoma, as well as suppression of tumorigenesis
by CSR [34]. The flaxseed-derived lignan phenolic secoisolariciresinol
diglucoside (SDG) was reported to protect non-malignant lung cells
from radiation damage [35]. SDG decreased the radiation-induced ac-
cumulation in the DNA damage characterized by decrease in the per-
centage of γH2AX-positive cell [35]. Similar results were found for
mangiferin aglycone against radiation-induced DNA damage on normal
human intestinal epithelial cells (HIECs) [36]. It was shown that
mangiferin aglycone could eliminate 46.8% of the total DSBs, as
marked by decrease in γH2AX formation [36]. Pre-treatment of cells
with the extracts could significantly decrease induced DSBs, DNA
fragmentation, and intracellular ROS, as well as γH2AX formation
compared to non-treated cells [37]. Amararathna et al. [37] for ex-
ample, reported that polyphenols-rich has kap fruit extracts prevented
tobacco specific nitrosamine-induced DNA damage in lung epithelial
cells. Green tea catechin suppressed γH2AX formation induced by B[a]P
in breast cancer cells [38]. In addition to the chemopreventive function
of polyphenols, these compounds attract more attention because of
their potential antitumor effects in various cancer cells mediated by the
increase in cellular DNA damage and hence induction of apoptosis and
other cell death pathways. For example, oleocanthal isolated from
extra-virgin olive oil (EVOO) was reported to increase ROS levels,
suppress cell growth, and induce apoptosis in liver and colon cancer cell
lines [39]. Leptadenia pyrotechnica polyphenols decreased the cell via-
bility in colon cancer cells and induced a p53-dependent apoptosis
through accumulation of γH2AX and DNA damage [40]. In another
study, the effects of Iraqi propolis extract on the γH2AX and DNA da-
mage levels was evaluated in colon cancer cell line. It induced apoptosis
in HL-60 cells associated with downregulation of Bcl-2 and activation of
Bax, stimulated cell cycle perturbations as well causing enhancing
γH2AX expression, increase in p53, and decrease in Ki-67 expression of
cells in tumor sections [41]. Moreover, oleocanthal treatment induced
expression of γH2AX, enhanced and caused mitochondrial depolariza-
tion, all of which contributed to therapeutic potential of this polyphenol
against cancer cells [39]. In breast cancer cell lines, diosmin, a citrus
fruit flavonoid, induced senescence, apoptosis and autophagy [42]. It
caused G2/M cell cycle arrest, as well as elevation in p53, p21 and p27
levels. In addition, it increased DNA damage, as indicated by increase in
γH2AX expression, hence acting against breast cancer cell lines [42]. In
prostate cancer cells, polyphenol piceatannol was reported to inhibit
cell proliferation through cell cycle blockade in G1/S and S phases, and
apoptosis induction by increasing γH2AX expression, and targeting the
mammalian target of rapamycin (mTOR)/AKT signaling [43]. In
ovarian cancer cells, polyphenol myricetin induced apoptosis via in-
creasing endoplasmic reticulum stress and γH2AX expression, hence
DSBs [44]. In lymphoid leukemia cells, polyphenols reduced ATP levels,
inducted apoptosis and increased S and/or G2/M phase cell cycle ar-
rest, hence enhancing doxorubicin and etoposide activity, [45]. More-
over, a combination treatment caused a synergistic downregulation of
glutathione levels, increased DNA damage and γH2AX expression, as
well as driving apoptosis via caspase-8 and caspase-9 activation [45].
Moron et al., evaluating using comet assay and γH2AX focus assay,
showed that chlorogenic acid, a plant polyphenol, induced DNA da-
mage in lung and leukemia cancer cells [46]. They found that this
polyphenol induced high levels of topoisomerase I- and topoisomerase
II-DNA complexes in cells [46]. Anthocyanin-rich blueberry extracts
were also reported to decrease UV-induced ROS levels and lessen DNA
damage by tail moment of comet assay and expression of γH2AX in situ
[47]. Additionally, it significantly downregulated p53 and p21 in UV-
irradiated liver cancer cells [47]. Soy bean extract containing genistein
induced γH2AX in mouse myeloid progenitor cells, which is dependent
on the poisomerase IIβ isozyme and proteasome activity [48].

Curcumin: Curcumin is a major bioactive compound of plan Curcuma
longa which attracts much more attention in cancer field for its various
functions in suppressing the initiation/ progression of various human

cancers. It has been demonstrated that it can also modulate DDR
components, especially γH2AX. For example, curcumin stimulated γ-
H2AX foci in irradiated malignant and transformed MCF-7 cell lines
[49]. Additionally, curcumin was shown to suppress cell growth and
increase the percentage of cells from G0/G1 with a concomitant in-
crease in G2/M phases, as well as a decrease in proliferating cell nuclear
antigen (PCNA) and Rho-A protein expression [49]. In acute promye-
locytic leukemia HL-60 cell line, a combination of curcumin and epi-
catechin resulted in a significant increase in the γH2AX level [50].
Moreover, curcumin can potentiate the DNA damaging effects of var-
ious chemotherapeutics, such as etoposide [51] and histone deacetylase
(HDAC) inhibitors [52]. Papież et al. [51] showed that curcumin sy-
nergistically increased the cytotoxic effect of etoposide, intensified
apoptosis and phosphorylation of the histone H2AX in leukemic HL-60
cells. However, curcumin did not significantly modify etoposide-in-
duced cytotoxicity and H2AX phosphorylation in normal CD34+ cells
and granulocytes [51]. Saleh et al. noted that both etoposide and cur-
cumin elicited DSB and evoked γH2AX foci formation [53], and that co-
treatment with etoposide and curcumin resulted in modulation of the
level of DNA damage induction and repair compared with either agent
alone In addition, cell cycle analysis revealed S-phase arrest after eto-
poside and curcumin application [53]. In prostate cancer cells, cur-
cumin exerted a therapeutic function through suppression of cellular
proliferation and induction of histone H2AX phosphorylation [54].
More interestingly, curcumin analogues, including bisabolocurcumin
ether (T1) and demethoxybisabolocurcumin ether (T2), were also re-
ported to trigger a much stronger apoptosis induction in multiple types
of cancer cells than curcumin does, owing to persistent and stronger
ROS generation. In addition, ROS induction by T1 resulted in activation
of p38/H2AX axis and p53. Inhibition of p38/H2AX led to a significant
reduction of apoptosis, whereas inactivation of p53 dramatically en-
hanced H2AX phosphorylation and apoptosis induction, suggesting that
activation of p38/H2AX contributed to apoptosis induction by T1.
However p53 activation protected novel curcumin-induced apoptosis
via suppression of H2AX activation [55].

Flavanols: Flavanols or flavan-3-ols exist in various forms of mono-
mers (catechins), oligomers, and polymers, displaying the most com-
plex structures among subclasses of flavonoid. The major member of
this subclass, (-)-epigallocatechin-3-gallate (EGCG), has been found to
exert chemopreventive, as well as therapeutic effects through targeting
DDR key components, especially γH2AX. For example, in lung tissue
exposed to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone (NNK), treatment by EGCG was shown to attenuate
DNA methyltransferase 1, p-AKT, and γH2AX inductions, and hence
inhibiting lung tumorigenesis [56]. Study on H1299 lung cancer cell
lines and xenograft tumors has shown that tumor cell apoptosis and
oxidative DNA damage, assessed by the formation of 8−OHdG and
γH2AX, were increased by EGCG treatment [57]. Treatment with EGCG
also caused the generation of intracellular ROS and mitochondrial ROS
[57]. In colorectal cancer cell lines, EGCG induced apoptosis and cell
cycle arrest [58]. An increase in DSBs determined by γH2AX protein
levels and induction of histone H3 hyperacetylation was additionally
observed with the EGCG treatment [58].

Ellagic acid: Ellagic acid, a dietary polyphenol belonging to phenolic
acids subclass, is abundantly found in pomegranate, grapes, strawber-
ries and walnuts. This compound was reported to increase the radio-
sensitization of HeLa cells through induction of γH2AX foci formation,
cell growth suppression, cell cycle arrest, disruption in mitochondrial
membrane potential and apoptosis induction [59]. In addition to killing
cancer cells, the Ellagic acid exerts radio-protective effects on normal
cell and aids recovery from the radiation damage [59], as well as en-
hancing apoptotic radiosensitivity of cervical tumor cells. Induction of
apoptosis in HeLa cells is mediated by increased ROS, increased calcium
levels, activation of full form (PLC), and decreases in the mitochondrial
potential [60]. Furthermore, increased radiosensitivity is mediated by
increase in γH2AX foci formation and hence DNA damage in cancer
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cells [60]. Similar results have been reported for the effects of this
compound on γ-irradiated in human breast cancer MCF-7 cells [61].
Combined treatment of ellagic acid and radiation significantly induced
apoptosis, cell cycle arrest, and decreased mitochondrial membrane
potential accompanied by an increase in DNA damage and γH2AX ex-
pression [61].

Resveratrol: Resveratrol is an anti‑fungal phytochemical that belongs
to the stilbenes subclass of polyphenols. The major dietary sources of
resveratrol include grapes, berries, and red wine. In addition to various
biological functions attributed to this polyphenol, an increasing number
of studies are pointing to the involvement of resveratrol in the DDR,
investigating its effects on the DDR components such as γH2AX. In this
context, the function of resveratrol depends on the type of cell and the
experimental conditions: in some cell types it decreases DNA damage,
while in other cells increasing DNA damage by resveratrol is the fa-
vorable effect. For example, it was reported that HS-1793, a resveratrol
analogue, effectively suppressed DNA damage in 2 Gy-irradiated
Chinese hamster’s ovary (CHO)-K1 cells [62]. This effect of HS-1793
was mediated by free radical scavenging and DNA strand breaks in-
hibition, as indicated by decrease in the levels of phosphorylated H2AX.
Moreover, glutathione levels and SOD activity was also increased fol-
lowing HS-1793 treatment. Therefore, HS-1793 was proposed to have
chemical radioprotective activity [62]. In Jurkat T cells treated with
camptothecin, resveratrol metabolites resveratrol-3-O-glucuronide, re-
sveratrol-4′-O-glucuronide decreased DSB as well as the expression le-
vels of γH2AX. In other words, the metabolites decreased DNA damage
induced by camptothecin [63]. However, other investigations have
reported contrasting results as to resveratrol may increase DDR in
combination with other chemotherapeutics, and radiation, or even
alone. Li et al., reported that resveratrol induced cell cycle arrest and
cellular senescence in U2OS and A549 cancer cells as well as in normal
human fibroblasts [64]. This effect is believed to be mediated by the
elevation of ROS induced DNA damage and increase in the amount of
γH2AX. The authors additionally demonstrated a critical role for p53-
CXCR2 axis in mediating resveratrol-induced senescence. In human
primary dermal fibroblasts (BJ), resveratrol increased the senescence in
association with β-galactosidase activity and methylated H3K9-Me.
Additionally, resveratrol treatment also resulted in significant increase
in phosphorylation of γH2AX, as well as levels of p53, p21CIP1 and
p16INK4A [65]. In another in vitro study on the human chronic myelo-
genous leukemia cells, resveratrol induced apoptosis and phosphor-
ylation of H2AX [66]. In addition, resveratrol treatment activated two
MAPK family members (p38 and JNK) and blocked the activation of
another MAPK family member ERK. Overexpression of H2AX in cancer
cells markedly increased resveratrol-induced apoptosis, whereas over-
expression of H2AX-139m (Ser139 was mutated to block phosphor-
ylation) inhibited resveratrol-induced apoptosis. K562 cells transfected
with H2AX-specific siRNAs were resistant to resveratrol-induced
apoptosis [66]. Some recent studies report that DDR suppressive effects
of resveratrol are concomitant with the inhibition of the topoisomerase
IIa. Leone et al. [67,68] reported that resveratrol treatment of human
glioblastoma cells induced cell cycle arrest in addition to increase in
histone H2AX phosphorylation. Therefore, resveratrol could be con-
sidered a topoisomerase IIa poison. Rashid et al. [69] investigated the
effects of resveratrol on the radiation sensitivity of prostate cancer cell
lines. The authors reported that this polyphenol inhibited survival of
cancer but not normal prostate cells. In addition, it was observed that
H2AX phosphorylation and DNA damage increased in cancer cells
treated with resveratrol; hence a significant induction was resulted in
radiation-induced cell cycle arrest, nuclear aberrations and apoptosis.
Similar results were reported in a study by Basso et al. [70] in which
resveratrol-pretreated human lymphocytes showed higher expression of
γH2AX in irradiated cells. An increase in γH2AX levels and consequent
DNA damage is the main mechanism of resveratrol treatment in com-
bination with other agents, such as purine analogues [71], temozolo-
mide [72], metformin [73], and pterostilbene in suppressing various

cancer cells proliferation [74].

4.2. Polyphenols and DDR transducer

DDR transducers are responsible for the amplifying and transmitting
signals form sensors to mediators [75]. The serine/threonine kinases,
ATM and ATR, are well-known transducers in the DDR pathway, in-
itiating a cascade of phosphorylation events following DNA damage
[76]. Upon DSBs, the inactive ATM dimer is stimulated by mono-
merization and eventual intermolecular phosphorylation of multiple
serine residues. At ssDNA lesion sites, ATR-interacting protein (ATRIP),
which binds to the RPA-ssDNA complex, recruits ATR [76]. Both ATM
and ATR phosphorylate mediator proteins, such as the breast cancer
susceptibility gene 1(BRCA1), NBS1, p53, CHK1, and CHK2 ATM ki-
nases, also phosphorylate Chk2, p53, and BRCA1in order to transmit
the damage signals to effectors and elicit appropriate response [77].
While knockout ATM mutations result in pleiotrobic defects, such as
growth defects, infertility, and neurologic dysfunction, an ATR muta-
tion results in embryonic lethality [77]. DNA-dependent protein kinases
(DNA-PKcs) are induced upon the detection of DSBs and subsequently
autophosphorylate and phosphorylate other substrates. DNA-PKcs play
an important role in DSB repair through non-homologous end joining
(NEHJ) [78]. An accumulating body of studies has reported DDR
transducers as potential targets of various subclasses of polyphenols.
George et al. [79] showed that apple flavonoids effectively depressed
cisplatin- and methotrexate-induced DNA damage in normal human
bronchial epithelial cells, and carcinogen treatment resulted in aug-
mentation of DDR signaling and ATR phosphorylation. Apple flavo-
noids downregulate DNA-PKcs protein and phosphorylation of ATR, as
well as induce a significant inhibition of γ-H2AX protein in flavonoids-
pretreated cells. Therefore, pretreatment with phosphorylation of ATR
significantly attenuates the DDR proteins specially challenged against
carcinogens induced genotoxicity. Biechonski et al. [80] evaluated the
effects of quercetin, as an flavonol, on DDR by targeting transducers in
human hematopoietic stem as well as progenitor cells. Quercetin acti-
vated ATM by triggering its autophosphorylation on Ser1981. ATM
activation correlated with a large increase in the proportion of γH2AX-
positive cells, confirming DSB accrual. On the other hand, DNA damage
produced by quercetin did not trigger the Ser2056 autophosphorylation
that would efficiently be triggered by radiation. However, robust DNA-
PKcs autophosphorylation on Ser2056 exceeded that of radiation alone,
suggesting that quercetin does not inhibit DNA-PK kinase. Thus, quer-
cetin would exhibit genotoxic effects in human hematopoietic stem
cells when applied continuously and at high concentrations. In another
study by Ye et al. it was demonstrated that genistein induced the
phosphorylation of p53 and that genistein-induced accumulation and
phosphorylation of p53 was reduced in ATM-deficient human cell lines.
In addition, genistein induced the phosphorylation of ATM and histone
H2AX. Like genistein, quercetin also induced phosphorylation of ATM,
and ATM-dependent phosphorylation of histone H2AX. However, p53
accumulation and phosphorylation occurred in ATM-deficient cells,
indicating that ATM is not required for quercetin-induced phosphor-
ylation of p53. Genistein-mediated DDR activation is highly ATM-de-
pendent but in the case of quercetin, may be ATM-dependent only for
some downstream targets. Several therapeutic effects of curcumin were
also reported to mediate by ATM-dependent induction of DNA damage.
For example, Hu et al. [81] reported that curcumin treatment of head
and neck squamous cell carcinoma cell lines resulted in the induction of
cell cycle arrest and apoptosis through ATM/p53-dependent pathway.
In prostate cancer cell lines, the treatment of curcumin effectively
suppressed cellular proliferation and induced phosphorylation of ATM,
histone H2AX, Chk2, and p53 [54]. Sahu et al. [82] demonstrated that
treatment of human pancreatic cancer cells with a low and single
concentration of curcumin resulted in significant arrest of cells cycle
and induced significant apoptosis. Normal immortalized human pan-
creatic ductal epithelial cells remained unaffected by curcumin
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treatment. These effects of curcumin are believed to be mediated by
increased phosphorylation of H2AX and decreased DNA polymerase-b
level. In addition, curcumin cytotoxicity is ATM dependent, such that
silencing ATM expression by specific SiRNA blocks the phosphorylation
of ATM, protecting the cells from curcumin-mediated G2/M arrest and
apoptosis. In the vascular smooth muscle cell, curcumin induced se-
nescence in DNA damage and ATM-independent manner, because ATM
silencing does not reduce the number of senescent cells [83]. Amin
et al. noted that combination of luteolin and EGCG at low concentra-
tions synergistically increase apoptosis in both head and neck and lung
cancer cell lines induced by ATM- dependent phosphorylation of p53. In
prostate carcinoma DU145 cells, the ATM pathway plays a critical role
in gallic acid–induced cell cycle arrest. Activation of DDR evidenced by
increased γH2AX that is phosphorylated by ATM in response to DNA
damage, triggers antitumor activity of gallic acid in prostate cancer
cells [84]. In addition to gallic acid, resveratrol also exerted its antic-
arcinogenic activities, such as induction of apoptosis [85,86], cell cycle
arrest [87], and entrance to senescence state via activation of ATM-
dependent DDR in various cancer cells [88]. More importantly, ATM is
a direct target of resveratrol. Direct stimulatory effects of resveratrol on
purified ATM in vitro increased the catalytic efficiency of the kinase on
a model substrate mediated by resveratrol.

4.3. Polyphenols and DDR mediators

Mediator proteins are another key player activated in response to
DNA damage, responsible for synchronizing the temporal-spatial con-
trol of the multiple factors in the DDR, promoting their activation, as
well as recruiting other components, and regulating their association
with damaged DNA. Checkpoint kinase 2 (CHK2), mediator of DNA-
damage checkpoint protein 1 (MDC1), BRCA1, and p53-binding protein
(53BP1) are largely active in the ATM pathway, whereas CHK1, DNA
topoisomerase 2-binding protein 1 (TopBP1) and CLASPIN co-regulate
the ATR-dependent DDR pathway [89].

4.3.1. 53BP1
53BP1 is a well-known DDR mediator, which is recruited by γH2AX

to nuclear structures following DNA damage. This protein is required
for processing of the DDR signal and as a platform for recruitment of
other repair factors [90]. Among various polyphenols, the effects of
curcumin on DDR mediator protein, 53BP1, have been extensively in-
vestigated in various cells under DNA damage conditions. Mosieniak
et al. for example, reported that curcumin resulted in mitotic dis-
turbances leading to growth arrest and induction of senescence phe-
notype in human colon and breast cancer. The upregulation of γH2AX
as well as a gradual increase in the level of p53 and p21 proteins was
also detected. Increase in γH2AX activated 53BP1 foci formation, as
well as DDR cascade to curcumin-induced anticarcinogenic function.
Dimethoxy curcumin, a metabolically stable analogue of curcumin, was
reported to enhance the radiosensitivity of lung cancer cells, through
induction of DNA damage, as indicated by significant increase in
γH2AX and 53BP1 foci [91], resulting in oxidative stress-induced cell
death in human aortic smooth muscle cells, Curcumin treatment in-
creased the number of 53BP1 foci, and promoted disequilibrium of
cellular redox homeostasis leading to protein carbonylation and oxi-
dative DNA damage. DNMT2 upregulation was also a part of cellular
stress response after curcumin treatment [92]. Similar results were re-
ported for the effects of curcumin in human cells building the vascu-
lature, in which this polyphenol reportedly elevated sirtuin level, DNA
damage and 53BP1 foci formation, culminating in postponement of
cells senescence [93]. In the case of resveratrol, it was demonstrated
that this natural compound significantly inhibited DNA damage- in-
duced apoptosis (decrease in H2AX and 53BP1 phosphorylation) in the
cartilage of untreated ACLT plus Mmx rats [94], whereas increased the
radiosensitivity of prostate cancer cell lines through an increase in the
co-localization of γ-H2AX and 53BP1 foci and hence DNA damage [95].

Naringin and hesperidin treatment caused a robust activation of 53BP1
in response to DNA damage and apoptosis in prostate cancer cell lines
[96]. Echinacoside, a hydrophilic polyphenol glycoside, induced
apoptosis through enhancement in oxidative DNA damage, as shown by
an increase in intracellular oxidized guanine, 8-oxo-dG, and dramatic
upregulation of the DSB-binding protein 53BP1 [97]. Genistein induced
the phosphorylation of H2AX and the accumulation of 53BP1, hence
preventing the formation of excess radiation-induced centrosomes via
p21 upregulation in human U2OS cells and mouse NIH3T3 cells [98].
Quercetin exposure resulted in a prolonged presence of radiation-in-
duced γH2AX and 53BP1 foci, as well as increasing the radiosensitivity
both in vitro and in vivo [99].

4.3.2. Chk1/2
From a structural point of view, checkpoint kinase 1 (Chk1) and

Chk2 are two different molecules, despite having nominal similarity
[100,101]. While both kinases are demonstrated to act on the DDR
pathway, Chk1 is suggested to be the major kinase responsible for re-
sponses to DNA damage [102]. Checkpoint abrogations, suppression of
DNA repair and apoptosis induction are various important con-
sequences of genotoxic stress-mediated Chk1 inhibition [103–105].
Several polyphenols target Chk1 and Chk2/ in the process of exerting
their therapeutic function. For example, isoliquiritigenin, a natural
flavonoid found in licorice, shallots, and bean sprouts, induced cell
cycle arrest in both the G2 and M phases via DSB-mediated ATM/Chk2
signaling in HeLa cells [106]. A study has shown that isoliquiritigenin
treatment induced ATM and Chk2 phosphorylation, as well as the for-
mation of c-H2AX foci in the nuclei. However, Chk1 phosphorylation
did not occur after 8 h of the treatment [106]. Expressions of γH2AX,
ATM, Chk2 and p53 are expected to increase following co-treatment
with radiation and resveratrol compared with the mock-treated control
group in prostate cancer cell lines. This resulted in delayed repair of
radiation-induced DSB and prolonged G2/M arrest, which induced
apoptosis [95]. Curcumin sensitized various cancer cell lines to poly
(ADP-ribose) polymerase (PARP) inhibitors by enhancing apoptosis and
mitotic catastrophe. This effect is mediated by impairment in activation
of ATR-Chk1 signaling, since the curcumin treatment significantly
suppressed the phosphorylation of ATR and Chk1 but not Chk2 phos-
phorylation, reflecting ATM-Chk2 signaling [107]. In animal model of
triple- negative breast cancer, it was reported that gallotannin mediated
S-phase arrest and tumor growth inhibition by Chk2 activation. Gallo-
tannin specifically stimulated a dramatic increase of Chk2 phosphor-
ylation, but not of Chk1. Inhibition of Chk2 by specific inhibitor re-
duced the forced accumulation of cells in the S-phase by gallotannin,
indicating that the accumulation of cells in S-phase after gallotannin
exposure was due to Chk2 activation [108].

4.3.3. BRCA1
The phosphorylation of BRCA1 plays a critical role in DDR.

Following DNA damage, BRCA1 is dispersed from the S-phase foci and
relocalized to damage-induced foci. The phosphorylated histone H2AX
significantly overlaps with BRCA1 following DNA damage. Therefore,
BRCA1 damage-induced foci are thought to be sites of DNA repair
[109]. Because of this important function of BRCA1 in DDR, dysfunc-
tion in BRCA1, which based on various studies, is mediated by poly-
phenol compounds, makes cancer cells more susceptible to apoptosis
alone or in combination with DNA damaging drugs. Chen et al. [110]
showed that curcumin increases the proliferation inhibitory effect of
cisplatin and promotes cisplatin-induced apoptosis in resistant lung
adenocarcinoma cells. These effects of curcumin were believed to be
associated with downregulation of FANCD2/BRCA pathway DNA da-
mage repair processes. Curcumin in combination with cisplatin could
exert a synergistic cytotoxic effect in cancer cells. Curcumin induced
DNA damage in triple-negative breast cancer cells in association with
phosphorylation, increased expression and cytoplasmic retention of the
BRCA1 protein, as well as to promote apoptosis and prevent anchorage-
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independent growth and migration of triple-negative breast cancer
cells. In addition, resveratrol induced the growth arrest of osteosarcoma
and lung adenocarcinoma cancer cell lines through upregulation of
BRCA1 formed foci, and induction of telomeric instability [111]. In-
crease in DNA damage by resveratrol also manifested in the phos-
phorylation of histone H2AX [111]. In breast cancer, soy polyphenols
were reported to modulate the signaling pathways in the downstream of
BRCA1 and BRCA2 oncosupressor genes [112], as well as the DNA
methylation of these genes [113].

4.4. Polyphenols and DDR effectors

DDR effectors receive information about DNA damage via signal
transduction through upstream transducers, and after processing, elicit
the most appropriate responses by either cell cycle arrest, recruitment
of DNA repair machinery, or induction of apoptosis [114]. Surprisingly,
previous studies have revealed over 700 proteins in the downstream of
transducers phosphorylated by ATM and ATR [76], as well as a large
number of novel connections and pathways downstream of some ef-
fectors, which have not previously been implicated in DDR. These
pathways play a variety of functions, including induced RNA splicing,
the spindle checkpoint, mitotic spindle and kinetochore proteins, non-
sense mediated decay, tumor suppressors, chromatin remodeling, in-
sulin signaling, and a multitude of transcription factors [114]. All these
connections have emphasized one important fact: the role of DDR in
cellular physiology is much more than previously appreciated.

4.4.1. Effectors for cell cycle arrest
The major role of the well-orchestrated cell cycle checkpoints is

creation of a tight coordination between DNA repair pathway and cell-
cycle progression [115]. Following DNA damage and signaling through
DDR, a delay or arrest at critical points of cell cycle is induced, either
before or during DNA replication or before cell division, through im-
portant effectors involved in this stage [6]. Several important DDR ef-
fectors with cyclin-dependent kinase (CDK) inhibition function include,
p21, a primary regulator of p53-mediated G1 arrest, WEE1 kinase, the
key inhibitor of mitotic entry and CDC25 phosphatases (CDC25A,
CDC25B, CDC25C) that removes inhibitory phosphorylation on CDK are
among the [116]. After DNA damage, CDC25 s are phosphorylated and
hence inactivated by Chk1 and Chk2 kinases in order to arrest the cell
cycle [116]. Intestinally, induction of cell cycle arrest is a common
consequence of treatment of various cells with polyphenols reported in
an accumulating body of studies for almost all classes of these natural
compounds.

Plant extracts polyphenols: Prasad et al. [117] reported that induction
of DNA damage and activation of cell cycle arrest-related effectors were
the underlying mechanisms by which polyphenols from green tea ef-
fectively suppressed the growth of melanoma cells. These polyphenols
induced cell cycle arrest at the G1 phase through inhibition of cyclin
D1, cyclin D2 and cyclin E, as well as the expression of CDK2, CDK4 and
CDK6 proteins. In colon cancer cell lines, gallotannin was noted to in-
duce senescence independently of p21 and p53. This effect was medi-
ated by gallotannin-induced increase in the generation of ROS and al-
ternation in the redox balance in the cells. Cell cycle arrest at S-phase
through induction of DNA damage, as indicated by p-H2AX staining, is
another major function of gallotannin on colon cancer cells [118]. Park
et al. (106)showed that induction in cell cycle arrest at G2 and M phase
is a major therapeutic effect of isoliquiritigenin in human cervical
cancer cells mediated by increase in DNA damage-dependent signaling
through ATM/Chk2. On the other hand, treatment with iso-
liquiritigenin inhibited the metaphase/anaphase transition and at the
same time it increased the formation of γH2AX foci, the phosphoryla-
tion of ATM and Chk2, separate poles and mitotic metaphase-like
spindles with partially unaligned chromosomes. The results of another
study by Shen et al. [119] showed that chalcone, the precursor com-
pound for flavonoid synthesis in plants, inhibited the proliferation of

human bladder cancer cell lines by blocking cell cycle progression in
the G2/M phase. More importantly, chalcone significantly increased the
expression of p21 and p27 proteins, and decreased the levels of cyclin
B1, cyclin A and Cdc2, thereby contributing to cell cycle arrest. In colon
cancer cell lines, 5-methoxyflavanone was demonstrated to inhibit the
growth and clonogenicity of cancer cells through activation of DDR, as
marked by the accumulation of p53 and the phosphorylation of ATM,
Chk2, and histone H2AX. Downstream of these events, this polyphenol
was reported to induce cell cycle arrest at G2/M phase. Pretreatment of
cancer cells with the ATM inhibitor increased 5-methoxyflavanone-in-
duced γH2AX formation, indicating that ATM/Chk2 checkpoint
pathway acts as a survival program to block apoptosis induced by this
compound [120]. In HaCaT keratinocytes, EGCG reduced the protein
levels of cyclin D1 and Zac1 (a zinc-finger protein which regulates
apoptosis and cell cycle arrest 1), also induced the expression of p21
and DEC1 (differentiated embryo-chondrocyte expressed gene 1), hence
promoting G1 arrest of cell cycle [121]. Naringenin also reported to
exert its therapeutic effects through induction of cell cycle arrest and
regulation of various effector proteins involved in this event [122,123].
Some polyphenols increase the sensitivity of cancer cells to conven-
tional chemotherapeutic agents by modulation of cell cycle programs.
For example, crude phenolic extracts from extra virgin olive oil was
indicated to reverse breast cancer resistance to HER1/HER2-targeting
drugs by inducing GADD45-sensed cellular stress, G2/M arrest and
hyperacetylation of histone H3. This effect was also accompanied by
increase in DNA damage [124]. In another study evaluating the effects
of scutellarin on prostate cancer cells, researchers found that this
polyphenol enhanced the sensitivity of cells to cisplatin, with additional
observation that scutellarin suppressed cell proliferation by promoting
G2/M arrest and inducing apoptosis, as well as increase in the phos-
phorylation of H2AX and the downregulation of cell cycle regulatory
genes including Cdc2, and cyclin B1 in prostate cancer cells [125]. In
several leukemia cell lines, combination of 5-fluorouracil with quer-
cetin, apigenin and rhein caused synergistic decrease in ATP levels,
induction of cell-cycle arrest at S-phase and increase in induced DNA
damage [126]. EGCG significantly and synergistically enhanced the
antitumor effects of the docetaxel in lung cancer cells through induction
of G2/M arrest [127].

Genistein: Arrest in cell cycle is also the main underlying mechanism
in suppression of cancer progression in the case of genistein. In an
important study by Rabiau et al. [128] the effects of genistein on a
panel of genes implicated in cell cycle was evaluated by polymerase
chain reaction arrays in human prostate cancer cell lines. They reported
the upregulation of CDKN1A gene, a major cyclin-dependent kinase
inhibitor. This gene encodes the p21CIP1 protein, which is involved in
the regulation of the cell cycle at both the G0/G1 and G2/M phases.
CCNH (cyclin H), a regulatory component of the cyclin-dependent ki-
nase (CDK)-activating kinase (CAK) was observed to be upregulated in
cells treated with genistein. Downregulation of CHEK2 and TP53 occurs
in cancer cells treated with genistein. This explains the genetic defects
of CHEK2 and TP53 implicated in prostate cancer development [128].
Working on colon cancer cell lines, Han et al. [129] showed that gen-
istein significantly suppressed cell proliferation through modulation of
cell cycle distribution, and resulted in the accumulation of cells at G2/
M phase, with a significant decreasing effect of cyclin B1 and Chk2
proteins expression. In a similar study, Constantinou et al. [129]
showed that genistein delayed the G2/M phase of the cell cycle, and
induced apoptosis of human breast adenocarcinoma MCF-7 cells.
Tsuboy et al. [130] working on the same cells, found that supraphy-
siological levels of genistein (50 and 100 μM) were cytotoxic to these
cell lines and induced apoptosis. However, G0/G1 delay of MCF-7 cells
were occurred at physiological concentrations of genistein [130].

Quercetin: Quercetin displays a variety of dose-dependent chemo-
preventive, anti-tumor, anti-oxidant and anti-inflammatory activities
[131]. The concentration–response of DNA-damage pathway to this
compounds have been evaluated in HT1080 cells (a human cell line
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with wild-type p53) at doses relevant to human exposure [132].
Quercetin (20–30 μM) caused ROS generation, DNA damage (measured
as phospho-H2AX) and p53 induction. Moreover, it delayed cell cycle at
S-phase at low doses (8 μM), suggesting that quercetin affects DNA-
damage, p53 response and genotoxicity differently based on the ap-
plied. In an study by Jeong et al. [133], it was reported that a low
concentration of quercetin exerted cancer cell-specific inhibition of
proliferation resulted from cell cycle arrest at the G1 phase [133]. In
fact, quercetin induced p21 CDK inhibitor with a concomitant decrease
of phosphorylation of pRb, which in turn inhibited the G1/S cell cycle
progression by trapping E2F1. Low concentration of quercetin induced
mild DNA damage and Chk2 activation, which is the main regulator of
p21 expression by quercetin. In addition, quercetin downregulated the
cyclin B1 and CDK1, essential components of G2/M cell cycle pro-
gression. In breast cancer cell lines, quercetin treatment resulted in the
accumulation of cells specifically at G2/M phase of the cell cycle ac-
companied by a transient increase in the levels of cyclin B1 and CDC2
kinase activity. Moreover, quercetin markedly increased Cdk-inhibitor
p21CIP1/WAF1 protein level, however, upregulation of p53 by quercetin
was not observed. Accordingly, quercetin induced growth inhibition in
the human breast carcinoma cell lines by inhibiting cell cycle pro-
gression through transient M phase accumulation and subsequent G2
arrest [134]. In addition, cytotoxic effects of quercetin in leukemic cells
are also dose concentration-dependent. Quercetin causes S-phase arrest
during cell cycle progression in tested cancer cells. Quercetin induced
tumor regression and increased the life span in tumor-bearing mice
[135].

Resveratrol: Joe et al. [136] reported that resveratrol significantly
inhibited the tumor cell proliferation through induction of S-phase ar-
rest in various cancer cell lines, including esophageal adenocarcinoma,
colon carcinoma and breast carcinoma, esophageal squamous carci-
noma, as well as promyelocytic leukemia cells. The treatment epi-
dermoid carcinoma cells with this polyphenol caused significant sup-
pression of cell proliferation through a G1-phase arrest of the cell cycle.
This function of resveratrol was revealed to be mediated by induction of
WAF1/p21, decrease in the protein expressions of cyclin D1, cyclin D2,
and cyclin E, and decrease in the protein expressions of CDK2, CDK4,
and CDK6 [137]. Similar results have been found in prostate cancer cell
lines. Kuwajerwala et al. [138] showed that resveratrol resulted in in-
crease in DNA synthesis and enrichment of cancer cells in S-phase, and
concurrent decrease in the nuclear p21Cipl and p27Kip1 levels. Moreover,
nuclear Cdk2 activity increased in association with both cyclin A and
cyclin E. In general, prostate cancer cells treated with resveratrol were
shown to enter S-phase, but subsequent progression through S-phase is
impeded by the inhibitory effect of resveratrol on DNA synthesis. Fur-
thermore, resveratrol treatment was reported to induce S/G2 arrest in
cultured bovine pulmonary artery endothelial cell [139], Sphase arrest
in articular cartilage of ACLT plus Mmx rats [94], G2/M arrest in cells
with mutated human c-Ha-Ras [140], S-phase arrest in glioblastoma
cells [68], G1 and S arrest in lung cancer cells [73], and G2/M phase
arrest in oral squamous cell carcinoma cells [141]. In diffuse large B-
cell lymphoma cells, pterostilbene, a natural demethylated analog of
resveratrol, exhibited a strong cytotoxic effect, through significant de-
crease in mitochondrial membrane potential and also by enhancements
in ROS levels, leading to arrest in the S-phase of the cell cycle [142]. In
a study by Min et al. [143] the therapeutic function of xanthohumol
was evaluated on apoptosis-resistant human Burkitt lymphoma cell
line, Raji cells [143]. The authors stated that this polyphenol can effi-
ciently suppress cancer cell proliferation through induction of increase
in ROS levels, and subsequent increase in DNA damage. Another major
effect of xanthohumol was cell cycle arrest at G0/G1 phase correlated
with downregulation of CDK4, cyclin E, phosphorylated cyclin E, and
Cdc-2, and upregulation of cyclin-dependent kinase inhibitor P21, all in
a P53-independent manner.

Curcumin: Like other polyphenols, induction of cell cycle arrest is an
important mechanism for curcumin to suppress cancer cell

proliferation. This effect has been further studied in colorectal cancer.
In COLO 320DM cell lines, curcumin resulted in the cell cycle arrest at
the G0/G1 phase via suppressing the expression or activation of CDK4/
6/cyclin D and phosphorylation of Rb [144]. In HCT116 cells, curcumin
significantly induced the amount of DNA damage and mediated S and
G2/M phase arrest. The cell cycle arrest was hardly reversed by caffeine
as an inhibitor of ATM/ATR, indicating that the ATM and ATR signaling
pathways may not be involved in curcumin-mediated S and G2/M
phase arrest in HCT116 cells [145]. In another study on eight colorectal
cancer lines, including Caco-2, DLD-1, HCA-7, HCT116p53+/+,
HCT116p53–/–, HCT116p21–/–, HT-29 and SW480, it was reported
that the majority of cell cycle arrest occurred at the G2/M transition,
with a proportion of cell-arresting in mitosis, following treatment with
curcumin [146]. Pre-treatment with inhibitors of the DDR alleviated
curcumin-induced mitotic arrest but had little effect on G2/M
boundary. Moreover, pH2AX staining seen in mitotic, but not inter-
phase, cells suggests that this aberrant mitosis results in DNA damage
[146]. In colon and breast cancer cell lines, curcumin led to mitotic
disturbances, cells arrested in mitosis through induction of DSB damage
that brought about senescence in cancer cell. On the other hand, in-
hibition of tDDR by caffeine leads to the attenuation of senescence in-
duction in curcumin-treated cells [147]. Recently, it was shown that
curcumin treatment of hepatoma cells results in activation of Chk1-
mediated G2 checkpoint, associated with the induction of G2/M arrest
and the resistance of cancer cells to curcumin-induced apoptosis [148].
More interestingly, inhibition of Chk1 significantly abrogated G2/M
arrest and sensitized curcumin-resistant cells to apoptosis via upregu-
lation of Bad and in turn the loss of mitochondrial membrane potential.
The number of studies evaluating the role of curcumin in the regulation
of cell cycle and proliferation of cancer cells is growing with the con-
sensus that curcumin imposes cell cycle arrest through modulation of
DDR [149–157]. Curcumin treatment resulted in cell cycle arrest at G1
phase in the mesothelioma cell lines [150], G2/M phase in hepatocel-
lular cell lines [151,154], papillary thyroid carcinoma cell lines [152],
breast cancer cells [157], and bladder cancer cell lines [155], G0/G1
phase in hepatic stellate cell [153], G0 phase in mammary epithelial
carcinoma cells, prostate cancer cell lines, and B cell lymphoma cells
[158].

4.4.2. Effectors for DNA repair
There are several DNA repair mechanisms for responding to mul-

tiple types of DNA damage induced by various agents. A central DDR
factor, p53, is involved in the promotion of genomic stability and in-
tegrity trough regulation of DNA repair pathways, such as nucleotide
excision repair (NER), base excision repair (BER), mismatch repair
(MMR), homologous recombination (HR), and non-homologous end-
joining (NHEJ). Components of these DNA repair pathways are mostly
regulated by polyphenols. In other words, various polyphenol com-
pounds regulate DNA repair machineries in response to DNA damaging
agents and conditions, such as UV-irradiation [99,159–164], oxidative
stress [160,165–169], and tert-butyl hydroperoxide [170], as reported
by various studies.

4.4.2.1. MMR. Mismatches that happen during meiosis and mitosis are
repaired with help from the MMR pathway. That is, the MMR pathway
is activated when replication errors, such as insertion/deletion loops
(IDLs) occur as a consequence of temple slippage, or base-base
mismatches due to DNA polymerase misincorporation of nucleotides
[171]. In addition, the MMR pathway acts to repair mismatches
generated by spontaneous deamination of 5-methylcytosine as well as
heteroduplexes generated subsequent to genetic recombination [171].
Additionally, it has a possible role in antibody class-switch
recombination and oxidative DNA damage fixation [171]. Defects in
this pathway causes to increase probability of spontaneous mutations
and microsatellite instability (MSI) [172]. Mutations in multiple human
MMR genes lead to high susceptibility to diseases and different types of
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tumors. The three proteins essential for recognition and repair of
mismatches are MutS that forms a dimer to detect the mismatched
base and binds to mutated DNA, MutH which binds at hemimethylated
sites and become activated by a MutL dimer which acts as a mediator
between MutS2 and MutH through binding to the MutS-DNA complex
[172]. Jiang et al. [173] showed that the MMR system modulates
curcumin sensitivity through induction of DSB and activation of G2-M
checkpoint. However, the DDR induction was observed to be more
considerable in MMR-proficient as compared with MMR-deficient cells.
These results indicate that curcumin triggers the accumulation of DNA
DSB and induce a checkpoint response through a MMR-dependent
mechanism, such that in MMR-deficient cells, curcumin-induced DSB is
significantly blunted. As a result, cells fail to undergo cell cycle arrest,
enter mitosis, and die through mitotic catastrophe. In lung cancer cell
lines, curcumin increased DNA damage and decreased DNA repair in
order to suppress cancer cells proliferation. These effects of curcumin
on DNA repair capacity of cancer cells were found to be mediated by
the inhibition of MMR genes, such as O6-methylguanine-DNA
methyltransferase (MGMT), and other genes, including BRCA1, and
mediator of DNA damage checkpoint 1 (MDC1) [174]. In addition to
curcumin, gallic acid also modulates MMR DNA repair pathway in
human oral cancer cells. Weng et al. [175] demonstrated that gallic
acid inhibited the protein expressions of MDC1, MGMT, p-H2AX, p53,
DNA-PK, and 14-3-3 proteins sigma (14-3-3σ) but increased the amount
of ATM, ATR, and BRCA1. That is, gallic acid induced cell death by
increase in DNA damage and suppression of DNA repair-associated
protein expression in cancer cells [175]. The exact same results were
reported by Liu et al. [176] who investigated the effects of gallic acid on
prostate cancer cell lines and found that increased DNA damage and
decreased DNA repair were essential for chemopreventive effects of
gallic acid in prostate cancer.

4.4.2.2. BER and NER. The BER pathway has been developed to
manage the high level of spontaneously corrupted products formed in
DNA, as well as the injuries that are created by reactions with natural
endogenous chemicals, especially ROS [177]. BER is an effect of the
action of five important proteins: DNA glycosylases that recognize and
remove the damaged base from the sugar-phosphate backbone and
leave an apurinic/apyrimidinic (AP) site, AP endonucleases which
incise an AP site to produce a 3′-hydroxyl next to a 5′-
deoxyribosephosphate (dRP) [177], polynucleotide kinase-
phosphatase (PNKP), which assists formation of a hydroxyl on its 3′-
end and a phosphate on its 5′-end of DNA strand break, DNA
polymerases that help to fill the gaps by inserting a single nucleotide,
and DNA ligase which seals the nick. BER machinery is a target of some
polyphenolic compounds; some have been reported to increase BER
proteins and other have been shown to suppress this pathway in order
to function as a chemopreventive agent [178]. For example, Gao et al.
[179] showed that exposure of prostate cancer cells to naringenin leads
to significant decrease in 8−OH-dG levels, hence DNA damage with
significant activation of the BER pathway, as indicated by considerable
enhancement in the expression levels of two major enzymes in the this
pathway, including 8-oxoguanine-DNA glycosylase 1 (OGG1), and AP
endonuclease. Naringenin exerted these effects at its physiological
concentrations. Therefore, this polyphenol could prevent mutagenic
changes in prostate cancer cells through increment of BER pathway.
Interestingly, in a study by Silva et al. [180] it was revealed that some
polyphenols, such as luteolin and quercetin, act on the intracellular
mechanisms responsible for DNA repair, rather than by a direct effect
on ROS scavenging. They also found that rosmarinic acid target OGG1
directly and increases its expression [180]. On the other hand, soy
isoflavones was found to sensitize lung cancer cell lines to radiation by
increasing DNA damage and suppressing DNA repair. Soy isoflavones
and radiation caused an increase in γH2AX foci, indicating both
increased DNA damage and inhibition of repair [181]. Soy
isoflavones inhibits the radiation-induced activity of the DNA repair/

redox enzyme APE1/Ref-1. Methoxyamine, which in turn inhibits
APE1/Ref-1 DNA repair activity with incomplete blockade of the
decrease in radiation-induced DSBs, displays partial mitigation of
radiation-induced DNA repair akin to the effect of soy combined with
radiation [181].

NER is an extremely significant and versatile DNA repair me-
chanism that eliminates a wide spectrum of single-strand damages
causing local helix-destabilization, for example, pyrimidine dimers the
most important DNA damages caused by UV [182]. NER carries out its
function in two sub pathways which include global genomic NER (GG-
NER or GGR) for localizing damages anywhere in the genome, and
transcription coupled NER (TC-NER or TCR) for eliminating transcrip-
tion-stalling damages and allowing quick resumption of transcription
[183]. The difference between these two sub pathways comes down to
how they identify DNA lesions [183]. They are the same in damage
incision, repair and ligation process. Identification of the lesion leads to
elimination of a short single-stranded DNA part that contains the da-
mage. DNA polymerase uses undamaged single-stranded DNA as a
template to synthesize a short complementary sequence [184]. Finally,
ligation is done by a DNA ligase and NER process. The proteins involved
in NER include: XPC and XPA to recognize and verify lesions, XPF and
XPG work as 5′- and 3′-exonucleases respectively, polymerase sigma or
epsilon, RFC, PCNA which fills in the gap and ligase I or IV that seal
RNA [184]. Just like the BER pathway, NER machinery is also a potent
target of various polyphenols. For example, chemopreventive activity of
green tea polyphenols against photocarcinogenesis was reported to be
mediated by NER pathway. The expression levels of major proteins
involved in this pathway, including XPA, XPC, RPA1, DDB2, and DDB1,
was significantly increased in the skin of mice treated with polyphenols
after UVB exposure [185]. In addition, it was revealed that polyphenols
repair UV-induced DNA damage in XPA–proficient cells of a healthy
person, but not XPA-deficient cells obtained from XPA patients, in-
dicating that a NER mechanism is involved in DNA repair [185]. Black
raspberry extract reduced levels of DNA adducts and inhibited muta-
genesis relative to the oral leukoplakia cell line treated with dibenzo
[a,l]-pyrene (DBP) [186]. This effect is due to increased repair of DNA
adducts (NER pathway) and not metabolism of DBP [186]. XPA,
ERCC5, and DNL3 have been reported to be targeted by ellagic acid.
Additionally, mice fed with this polyphenol showed significantly de-
creased DNA adducts, indicating that ellagic acid reduces endogenous
oxidative DNA damage by mechanisms that may involve increase in
NER machinery [187].

4.4.2.3. NEHJ and HR. The main repair mechanism for DSBs is HR
repair and NHEJ. HR is a kind of genetic recombination event in which
nucleotide sequences are exchanged between two similar or two of the
same molecules of DNA. Since it is based on a homologous template, HR
occurs only during the S and G2 phases [188]. There are three phases in
HR, namely pre-synapsis, synapsis, and post-synapsis. The initial step is
processing DNA to a 3′-overhanging tail by a Rad51 filament commonly
referred to the pre-synapsis step. The synapsis step consists of homology
search and DNA strand invasion catalyzed by core proteins [188]. When
the homologous DNA is found, Rad51 mediates DNA strand invasion
reaction. Subsequently, DNA synthesis from the 3′-end of the invading
strand is done by DNA polymerase η, followed by consecutive ligation
by DNA ligase I to produce a four-way junction midway structure
known as a Holliday junction [189]. This intermediate recombination is
removed by one of three ways: i) dissolution mediated by the BLM-
TopIIIα complex, ii) symmetrical split by GEN1/Yen1 or Slx1/Slx4, ii)
asymmetric split by the structure specific endonuclease Mus81/Eme1
[189]. Shirode et al. demonstrated that pomegranate extract inhibited
breast cancer cell growth by inducing cell cycle arrest in G2/M followed
by the induction of apoptosis. It was also shown in DNA microarray
analysis that PE downregulated genes associated with mitosis,
chromosome organization, RNA processing, DNA replication, and
DNA repair, particularly HR pathway. Major genes involved in HR,
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such as MRE11, RAD50, NBS1, RAD51, BRCA1, and BRCA2, were
significantly downregulated by treatment with pomegranate extract.
Resveratrol was also reported to strongly inhibit several genes of HR,
DNA replication, and cell cycle in breast cancer cells [190]. Liu et al. by
comparing the survival of wild type with isogenic DNA-repair deficient
DT40 cell lines demonstrated that HR mutants of Brca1−/− and
Brca2−/− cells were more sensitive to resveratrol. The sensitivities of
cells were associated with enhanced DNA damage in terms of
accumulation of γH2AX foci and number of chromosome aberrations.
Therefore, resveratrol-induced DNA damage and repair pathway play
critical roles in response to resveratrol-mediated genotoxicity. Various
repair genes have been identified, such as APEX, ERCC1, ERCC2,
ERCC4, MGMT, OGG1, XPA, XPC, XRCC1, XRCC3, AHR, and
CYP1A1. Guarrera et al. [191] showed that a flavonoid-rich diet
significantly upregulated XRCC3, as central gene in HR, in healthy
male smokers.

In contrast to HR which requires a homologous sequence, in NHEJ
the fractured ends are directly ligated without needing homologous
template [192]. Some of the essential factors that are consecutively
required to DSB sites are used in NHEJ mechanism. The initial step in
the NHEJ pathway implicates identification and binding of the Ku70/
Ku80 heterodimer (Ku) to the exposed DNA termini of the DSB [192].
Structurally, the three-dimensional structure of Ku70/80 exposes a
preformed ring-shaped structure that completely surrounds the DNA
duplex [193]. After binding to DNA, the Ku-DNA complex needs the
catalytic subunit of DNA-PKcs to produce the DNA-PK holoenzyme with
protein kinase activity. The binding of the DNA-PKcs molecules on
contrary DSB ends assists synapsis or tethering of the two DNA mole-
cules [193]. In addition, synapsis of DNA-PKcs causes autopho-
sphorylation of DNA-PKcs, making the DNA termini available. In NHEJ,
two members of the X family DNA polymerases, Pol μ and Pol λ, are
needed for synthesizing missing nucleotides. After processing the DNA
termini, DNA ligase IV along with its binding partner, XRCC4, carry out
the ligation of the DNA ends [194]. The underlying mechanisms of
chemosensitization by curcumin have been demonstrated to be relied
on two major DDR pathways: NHEJ and the DNA damage checkpoint
[107]. Curcumin suppressed the histone acetylation at DSB sites by
inhibiting histone acetyltransferase activity, thereby reducing recruit-
ment of the key NHEJ factor KU70/KU80 to DSB sites. It also inhibited
ATR kinase, resulting in impaired activation of ATR-Chk1 signaling
necessary for DNA damage checkpoint pathway [107]. Curcumin sup-
pressed two DDR pathways by inhibiting histone acetyl transferases and
ATR. In mice exposed to radiation, ferulic acid abrogated γ-radiation
induced oxidative stress and DNA damage by up-regulating nuclear
translocation of Nrf2 and activation of NHEJ pathway [195]. Ferulic
acid pretreatment regulated the nuclear translocation of p53, inhibited
ATM activation, expression of GADD45a gene, and activated NHEJ
[195].

4.4.3. Effectors of apoptosis
Apoptosis is another important DDR effector. With more stringency

and accuracy in comparison to cell-cycle arrest or repair, it has the
ability to decrease the risk of cell accumulation with compromised
genomes [26]. More importantly, apoptosis is a key cell death modality
in different pathologic conditions, including tissue damage in cere-
brovascular decease, cardiovascular diseases, and cancer, to name a few
of these conditions [196]. Induction of apoptosis by various poly-
phenols has been described in a several numbers of studies as a, par-
ticularly in the case of cancer. It has been extensively demonstrated that
administered alone, in combination with conventional chemotherapy,
radiotherapy, or with other polyphenols, these natural compounds ap-
pear active to prevent the incidence and spread of cancer, among which
apoptosis play a considerable function. In addition, polyphenols are
reported to modulate apoptosis in response to DNA damage in various
cancer cells, such as bladder, breast, prostate, colon, leukemia, lung,
liver, ovary, glioma and skin cancers Polyphenols regulate extrinsic andTa
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intrinsic pathways of apoptosis by targeting key players of these path-
ways, including caspases, B-cell lymphoma-2 family protein (Bcl2), as
well as inhibitor of apoptosis proteins (IAPs). A comprehensive list of
studies about the role of polyphenols in the modulating of apoptosis in
response to DNA damage is represented in Table 2.

5. Conclusions

Polyphenols possess antioxidant capability and have been shown to
hamper oxidative stress, as well as subsequent cellular damages and
inflammation. Following any damage to cellular genomes, DDR and its
key players (e.g., DDR sensors, such as MRN complex) are triggered to
detect and sense DNA lesions and set an intricate cascade into motion.
This is done in order to eliminate deleterious damages. Afterwards,
DDR transducers (including serine/threonine kinases, ATM and ATR)
are activated to amplify and transmit signals form sensors to mediators.
Other key players in response to DNA damage are mediator proteins,
which synchronizes the temporal-spatial control of the multiple factors
in the DDR. These include promoting their activation, recruiting other
components, or regulating their association with damaged DNA. Signal
transduction through upstream transducers conveys information about
DNA damage to DDR effectors, which then elicit the most appropriate
response by either cell cycle arrest, recruitment of DNA repair ma-
chinery, or induction of apoptosis. Another important DDR effector
with more stringency and accuracy in comparison to cell-cycle, apop-
tosis, eliminates the risk of cell accumulation with compromised gen-
omes.
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